

From Project Director's Desk

Forests often serve as early warning systems for the health of entire ecosystems, yet the changes within them can be subtle and slow to detect. Recent research on Badrama and Bhitarkanika Wildlife Sanctuaries in Odisha shows how digital tools are reshaping this challenge. Using satellite data and Google Earth Engine, the study tracked vegetation changes from 2000 to 2024, uncovering how climate shifts and human activity together influence forest vitality.

The real strength of this work lies in its practical application. Both sanctuaries are under active conservation efforts through the Odisha Forestry Sector Development Project-II, and the results provide clear, evidence-based direction for management. Continuous satellite monitoring captures long-term patterns as well as seasonal fluctuations—an advantage far beyond the reach of field surveys alone.

This research highlights a broader shift in conservation: remote sensing is no longer a background tool but a core element in policy and planning. By bringing science and technology directly into decision-making, conservation strategies can move away from assumptions and be grounded in measurable realities. For Odisha's forests, this means stronger, smarter approaches to protecting biodiversity for the future.

The Adivasi Mela 2024–25 has set a new benchmark for the Income Generating Activities under the Odisha Forestry Sector Development Project (OFSDP). It may be called as a milestone in community enterprise, with the participation of VSSs and SHGs from across the projects of OFSDS and state, the participation mechanism empowered communities to connect directly with markets. This year's achievement is remarkable—sales touched an unprecedented ₹81.92 lakh, the highest ever turnover in the history of OFSDS's participation. Beyond numbers, the Mela has become a flagship platform for mobilizing grassroots institutions, promoting livelihoods, and enhancing the visibility of community enterprises.

This edition covers both the technology and community driven approach aspects of OFSDP-II. Such success in all the project tools are testament to the resilience of forest-dependent communities and the growing role of community engagement. OFSDP stands as a catalyst for sustainable development and economic self-reliance.

CONTENTS

Editorial	1
Cover Story	2
Special Case Study	4

Dr Meeta Biswal, IFS
PCCF (Projects) & Project Director
OFSDS

"What we are doing to the forests of the world is but a mirror reflection of what we are doing to ourselves and to one another"

ADIVASI MELA 2025 – PARTICIPATION & BUSINESS PERFORMANCE REPORT

OFSDS Showcases Forest-Based Livelihoods at Adivasi Mela 2024–25

The Odisha Forestry Sector Development Society (OFSDS) actively participated in the Adivasi Mela 2024–25, held from 5 to 16 January 2025 at the IDCO Exhibition Ground, Bhubaneswar. The annual event was organized by the ST & SC Development, Minority and Backward Classes Welfare Department, Government of Odisha.

This year, OFSDS booked 10 core stalls to facilitate marketing and business opportunities for community based institutions. A total of 23 Forest Divisions participated, including all 12 divisions under the Odisha Forestry Sector Development Project-II (OFSDP-II) and 11 divisions under Ama Jangala Yojana (AJY).

From these divisions, 27 Vana Suraksha Samitis (VSSs) and 29 Self-Help Groups (SHGs) showcased a diverse range of

non-timber forest products (NTFPs), forest-based goods, and other value-added items. The stalls were operated in two phases, with 110 field-level participants—including community members, SHG representatives, and field staff—taking part across the 12-day event.

The response was highly encouraging, with total sales reaching ₹81.92 lakh, a remarkable increase compared to last year's sales of ₹15.49 lakh. The event not only boosted income generation for SHGs, Common Interest Groups (CIGs), and Persons of Priority (PoPs), but also strengthened the visibility of forest-based livelihoods at the state level.

The success of OFSDS at the Adivasi Mela 2024–25 underscores the growing potential of community enterprises in sustainable forest management and livelihood promotion.

Celebrating Tribal Strength, Culture & Enterprise – Highlights

- Stalls Reserved:
10 core stalls by OFSDS
- Participating Forest Divisions:
23 (12 under OFSDP-II, 11 under AJY)
- Community Participation:
27 VSSs, 29 SHGs, 110 participants from community and respective divisions of OFSDP-II & AJY
- Stall Management:
Two rotational phases of 6 days each initiated.

Participation at a Glance

23 Divisions | 27 VSSs | 29 SHGs | 110 Participants

Business Performance: Record-Breaking Sales

- Total Sales: ₹81.92 lakhs
- Growth: More than five-fold increase from last year's ₹15.49 lakhs
- Products Showcased: NTFPs, Handicrafts, Handlooms, Wellness Products
- NTFPs: Honey, Cashew, Tamarind, Sal Leaf Plates
- Handlooms & Crafts: Sambalpuri Textiles, Eco-friendly Handicrafts
- Wellness Products: Herbal Oils, Natural Health Supplements

Product Category Share

NTFPs, Handicrafts, Handlooms, Wellness Products

Key Insights

- ✓ Direct customer engagement boosted SHG confidence
- ✓ High demand for NTFPs and handloom items
- ✓ Business skills strengthened through real market exposure
- ✓ Cultural exchange highlighted sustainable tribal traditions

Business Highlight – Record ₹81.92 Lakhs in Sales

Revenue Analysis by Division and Product Category

Division	Product Category	Revenue (INR)	Participation	Revenue Category
Division A	Forestry Products	150,000	15	Highest
Division A	NTFP	100,000	10	Moderate
Division B	NTFP	120,000	12	Highest
Division B	Value-added Products	90,000	9	Moderate
Division C	Forestry Products	80,000	8	Lowest
Division C	Value-added Products	70,000	7	Lowest

Revenue Segmentation: Highest, Moderate, and Lowest

Highest Revenue Segments:

- Division A (Forestry Products)
- Division B (NTFP)
- Combined Revenue: ₹ 270,000
- Combined Participation: 27

Moderate Revenue Segments:

- Division A (NTFP)
- Division B (Value-added Products)
- Combined Revenue: ₹ 190,000
- Combined Participation: 19

Lowest Revenue Segments:

- Division C (Forestry Products, Value-added Products)
- Combined Revenue: ₹ 150,000
- Combined Participation: 15

CONCLUSION

The Adivasi Mela 2024–25 was a landmark event for OFSDS and its community partners. The unprecedented sales growth reflects both rising market demand and tribal entrepreneurship empowerment. The success reaffirms the importance of capacity building, exposure, and sustainable livelihoods.

TESTIMONIALS OF SOME DIVISIONS

SUBARNAPUR DMU

Newsletter Report: Adivasi Mela 2025 Participation

Pragati SHG – Khajuriapali VSS, Ulunda FMU, Subarnapur DMU

Product: Handloom (Sambalpuri Clothes)

Net Business: ₹ 4 Lakhs

Overview

Pragati Self-Help Group (SHG) from Khajuriapali Vana Suraksha Samiti (VSS), under Ulunda FMU of Subarnapur DMU, proudly represented the Odisha Forestry Sector Development Society, FE & CC Department, at the Adivasi Mela 2025. The event was held from 11th to 16th January 2025 at the Exhibition Grounds, Bhubaneswar.

Participation & Representation

Representative: Sri Satyajit Gadua

Support: Mr. Naresh Pandey (Marketing Executive)

Products Displayed: A wide variety of Sambalpuri handloom items such as sarees, blouses, kurtis, and handkerchiefs.

Business Achievements

The SHG successfully achieved sales worth ₹4 lakhs.

Net profit recorded was around ₹70,000 – ₹80,000.

This marked the first-ever participation of Pragati SHG in the Adivasi Mela under OFSDP-II.

Experiences & Feedback

Pragati SHG members described the event as a memorable and enriching experience. Direct interaction with customers provided valuable feedback and boosted confidence. The Sambalpuri sarees received overwhelming demand, making the participation highly successful.

Additionally, the group had opportunities to exchange ideas and experiences with members from other divisions,

creating a strong sense of collaboration and learning.

The SHG expressed gratitude to the PMU staff for their continuous support, which contributed to the success of their first participation. The positive response has motivated the members, and Pragati SHG looks forward to taking part in future editions of the Adivasi Mela with greater enthusiasm and expanded product offerings.

DHENKANAL DMU

Showcasing resilience through business: Adivasi Mela 2025 Highlights of Dhenkanal DMU

The State Level Adivasi Mela 2024–25 was held at the IDCO Exhibition Ground, Bhubaneswar, from 5th to 19th January 2025. The annual event serves as a vibrant platform to celebrate the rich traditions, crafts, and entrepreneurial spirit

of tribal communities across Odisha. The fair brings together artisans, performers, and Self-Help Groups (SHGs), offering them an opportunity to present their culture while also strengthening livelihoods.

Participation from Dhenkanal DMU

The Dhenkanal Forest Division actively participated in the Mela, showcasing products prepared by VSS and SHG members from three villages adopted under OFSDP-II. This

participation not only provided exposure but also enabled members to gain valuable experience in a large-scale market setting.

Products Displayed:

- Cashew
- Honey
- Handicrafts
- Other locally sourced food items

Business Performance

Over the course of the 14-day fair, the SHG members collectively recorded sales of approximately ₹2.5 lakhs. This revenue reflects both the quality of their products and the

growing appreciation for natural and traditional tribal goods among urban consumers.

Key Drivers of Sales:

- High demand for organic honey and cashew products.
- Strong customer interest in authentic tribal handicrafts.
- Direct engagement with buyers, building trust and repeat purchase potential.

Profitability:

The SHGs reported a good profit margin, which will support reinvestment into production and capacity-building initiatives.

Experience & Cultural Exchange

Beyond business, the SHG members gained exposure to diverse aspects of tribal culture by witnessing performances in music, dance, and craft demonstrations. Interactions with

other groups encouraged knowledge sharing, inspiring ideas for expanding product lines and improving marketing strategies.

Conclusion & Outlook

The Adivasi Mela 2025 was more than just a trade fair—it was a celebration of diversity and resilience. For SHG members from Dhenkanal, it marked both financial achievement and cultural pride.

Looking forward, the emphasis will be on:

- Scaling production of high-demand products like honey and cashew.
- Enhancing branding and packaging to appeal to urban markets.
- Strengthening participation in future fairs for broader exposure.

Business Highlight: Dhenkanal SHGs achieved sales of ₹2.5 lakhs in 14 days, reflecting the growing market for tribal products and the potential for sustainable rural entrepreneurship.

SPECIAL FEATURE: CASE STUDY ON MONITORING VEGETATION INDEX

MONITORING VEGETATION TRENDS IN ODISHA'S WILDLIFE SANCTUARIES USING MODIS EVI AND CLOUD COMPUTING – A CASE STUDY IN BADRAMA WILDLIFE SANCTUARY AND BHITARKANIKA WILDLIFE SANCTUARY

By Swayam Mallick, IFS, JPD, (CME&S), OFSDP-II

ABSTRACT

Monitoring forest vegetation dynamics is crucial for assessing ecosystem health and guiding conservation efforts. In order to monitor vegetation dynamics this study employs Google Earth Engine (GEE) to analyze long-term vegetation trends in Badrama and Bhitarkanika Wildlife Sanctuaries, two ecologically significant protected areas in Odisha, India. These are the 2 protected areas where activities under Odisha Forestry Sector Development Project – II are being currently implemented. Using the Enhanced Vegetation Index (EVI) from the MOD13Q1.061 dataset of MODIS, the changes in vegetation condition from 2000 to 2024 was examined.

Time-series analysis and spatial mapping techniques were applied to detect trends and seasonal variations in forest health. The study highlights the influence of climatic variability and anthropogenic pressures on vegetation cover. Results provide insights into forest resilience and degradation patterns, supporting sustainable management practices. By leveraging cloud-based geospatial analysis, this study demonstrates the potential of GEE for efficient, large-scale environmental monitoring. Findings contribute to evidence-based conservation strategies, ensuring the long-term sustainability of these biodiverse sanctuaries.

INTRODUCTION

Forests are essential components of the Earth's biosphere, providing critical ecosystem services such as carbon sequestration, climate regulation, biodiversity conservation and livelihood support for millions of people. Monitoring forest vegetation dynamics is crucial for understanding ecological changes, assessing environmental impacts and formulating effective conservation strategies. Remote sensing technologies have revolutionized forest monitoring by offering consistent, long-term and large-scale observations of vegetation conditions. Among the various remote sensing approaches, vegetation indices derived from satellite imagery serve as reliable indicators of forest health, productivity and disturbances over time.

With the advancement of cloud computing and big data analytics, platforms like Google Earth Engine (GEE) have become powerful tools for large-scale environmental monitoring. GEE provides access to a vast archive of satellite datasets, including imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat missions, which are widely used for vegetation analysis. The Enhanced Vegetation Index (EVI), derived from MODIS imagery, is particularly effective for monitoring vegetation dynamics due to its improved sensitivity to dense vegetation, reduced atmospheric influence and minimized soil background effects compared to the traditional Normalized Difference Vegetation Index (NDVI). The MOD13Q1.061 dataset provides 16-day composite EVI data at a 250-meter spatial resolution, making it well-suited for long-term vegetation studies.

India's forests, particularly those within protected areas, face growing challenges from climate change, habitat fragmentation and anthropogenic pressures. This study focuses on Badrama Wildlife Sanctuary and Bhitarkanika Wildlife Sanctuary, two ecologically significant protected areas located in the state of Odisha.

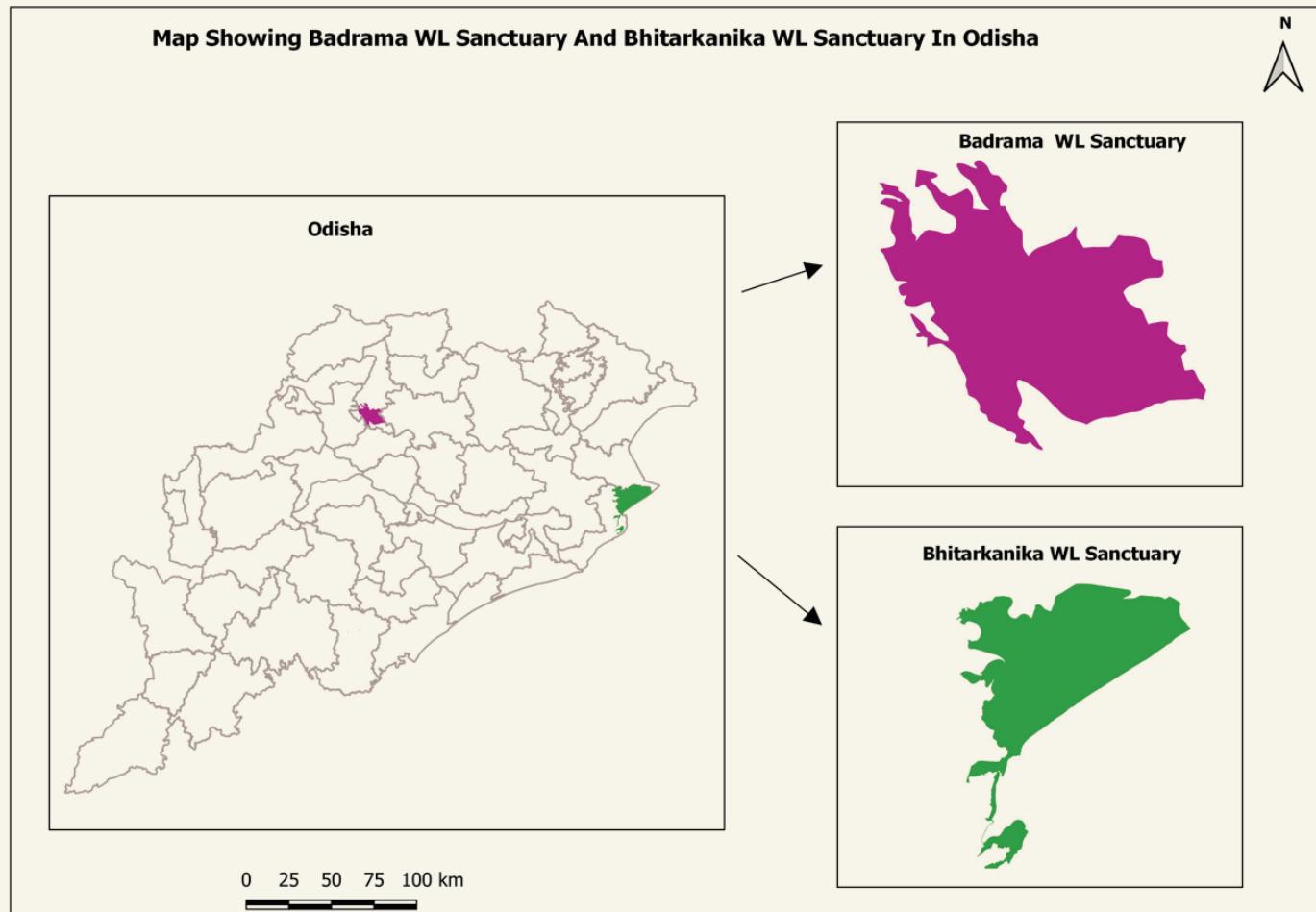
Badrama Wildlife Sanctuary, located in the Eastern Ghats, is dominated by tropical dry deciduous forests and is home to diverse fauna, including elephants, leopards and deer. This forested region is highly sensitive to climate variability and land-use changes. Bhitarkanika Wildlife Sanctuary, a Ramsar-listed wetland ecosystem, comprises extensive mangrove forests, estuarine habitats and intertidal zones. It serves as a critical breeding ground for saltwater crocodiles, migratory birds and several endangered species. The sanctuary is particularly vulnerable to sea-level rise, cyclones and human encroachments, making long-term vegetation monitoring essential for conservation planning.

The primary objective of this study is to assess spatiotemporal changes in vegetation health across Badrama and Bhitarkanika Wildlife Sanctuaries over a 24-year period (2000–2024) using MODIS EVI data in GEE. Specifically, the study aims to:

1. Analyze seasonal and interannual variations in vegetation indices to identify trends in forest health.
2. Map spatial patterns of vegetation change to detect areas of degradation, recovery or stability.

By utilizing the computational power of GEE, this study presents an efficient and scalable approach to long-term forest monitoring. The findings will provide valuable insights into vegetation resilience, degradation patterns and the overall health of Odisha's two important protected

areas, aiding policymakers and conservationists in making informed decisions. Furthermore, this study contributes to the growing body of knowledge on using cloud-based geospatial tools for sustainable forest management and biodiversity conservation.


METHODOLOGY

Study Area

This study focuses on two ecologically significant protected areas in the state of Odisha, India: Badrama Wildlife Sanctuary and Bhitarkanika Wildlife Sanctuary. These two sanctuaries represent distinct forest ecosystems—one comprising tropical dry deciduous forests in a hilly terrain and the other consisting of mangrove forests

in a coastal environment. Their unique biodiversity, ecological significance and vulnerability to climatic and anthropogenic disturbances make them ideal sites for long-term vegetation monitoring. The map showing the location of Badrama Wildlife Sanctuary and Bhitarkanika Wildlife Sanctuary is shown in the following Figure 1

Figure 1: Location of Badrama Wildlife Sanctuary and Bhitarkanika Wildlife Sanctuary

BADRAMA WILDLIFE SANCTUARY:

Badrama Wildlife Sanctuary, also known as Ushakothi Wildlife Sanctuary, is situated in Sambalpur district of western Odisha, covering an area of 304.03 square kilometers. It lies between approximately 21°21' to 21°34' N latitude and 84°12' to 84°28' E longitude. The sanctuary is characterized by undulating terrain with hill ranges belonging to the Eastern Ghats and is drained by the Badrama and Jharjhari rivers. The sanctuary comprises of parts of Badrama Reserve Forests, Ushakothi Reserve Forests, Binjipali Reserve Forests

and Additional Kansar Reserve Forests. The Sanctuary is characterized by the presence of Moist Sal Forests, Sal dominated mixed deciduous Forests and bamboo forests. The Sanctuary forms a significant part of Sambalpur Elephant Reserve. Dominant tree species include Sal (*Shorea robusta*), Asan (*Terminalia tomentosa*), Dhaura (*Anogeissus latifolia*), Bahada (*Terminalia bellerica*) and Mahua (*Madhuca indica*). The undergrowth includes shrubs and grasses which vary in density depending on soil moisture availability.

BHITARKANIKA WILDLIFE SANCTUARY:

Bhitarkanika Wildlife Sanctuary is located in Kendrapara district along the northeastern coast of Odisha, covering 672 square kilometres. It lies between 20°30' to 20°50' N latitude and 86°30' to 87°06' E longitude. Bhitarkanika is part of the Mahanadi delta system and is crisscrossed by a network of tidal rivers, estuaries and creeks making it one of the largest mangrove ecosystems in India. It was designated a Ramsar

Wetland of International Importance in 2002 due to its rich biodiversity and critical ecological functions.

The vegetation is dominated by mangrove forests. These mangroves provide crucial ecosystem services, including coastal protection, carbon sequestration and breeding habitats for marine life.

DATA SOURCE

Remotely sensed indices such as enhanced vegetation index (EVI), normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) are widely used to estimate vegetation status from satellite imagery. EVI and NDVI estimate vegetation chlorophyll content while NDWI estimates vegetation moisture content. All these indices can be derived from free public imagery of satellites like Landsat and MODIS, available in the Earth Engine data catalogue. This study uses MODIS EVI data from the MOD13Q1.061 dataset for the period from year 2000 to 2024.

The MOD13Q1 V6.1 product provides a Vegetation Index (VI) value at a per pixel basis. There are two primary vegetation

layers. The first is the Normalized Difference Vegetation Index (NDVI) which is referred to as the continuity index to the existing National Oceanic and Atmospheric Administration-Advanced Very High Resolution Radiometer (NOAA-AVHRR) derived NDVI. The second vegetation layer is the Enhanced Vegetation Index (EVI) that minimizes canopy background variations and maintains sensitivity over dense vegetation conditions. The EVI also uses the blue band to remove residual atmosphere contamination caused by smoke and sub-pixel thin cloud clouds. The MODIS NDVI and EVI products are computed from atmospherically corrected bi-directional surface reflectances that have been masked for water, clouds, heavy aerosols and cloud shadows.

APPROACH

The MODIS 250m/pixel 16-day composite vegetation indices dataset was imported into the code editor. The boundaries of the Badrama Wildlife Sanctuary and Bhitarkanika Wildlife sanctuary were uploaded in the form of shape files. MODIS images for summer months i.e. during the period from March to June in each year were filtered. The annual summertime composites were then computed. An image collection with an image for each year from 2000 to 2024 was built. Each of these images was calculated to be the maximum EVI in the summer months of its corresponding year. This is the measure of the status of the vegetation for each year in the area of study. Also, the year as a band was added, in preparation for linear trend analysis.

A linear trend was estimated at each pixel by calculating its Sen's slope of maximum summer EVI with time. Histograms of the regression slope values for each wildlife sanctuary were calculated and visualized. Pixel-wise vegetation greening or browning based on the sign of the slope value was inferred. Summary of areas under greening and browning for each sanctuary was then calculated. The areas of vegetation greening and browning for each wildlife sanctuary was tabulated as shown in Table 1. Suitable visualization parameters were chosen and the slope values were displayed on the map to denote areas under greening and browning, along with the wildlife sanctuary boundaries.

RESULTS AND DISCUSSION

The spatial representation of vegetation condition have been shown for both Badrama Wildlife Sanctuary and Bhitarkanika Wildlife Sanctuary in Figure 2 and 3 respectively. The image shows a pixel-based vegetation analysis, where different

shades of green and brown indicate variations in vegetation health. Green pixels represent areas with healthier vegetation. Brown pixels suggest areas experiencing vegetation stress, degradation or sparse vegetation

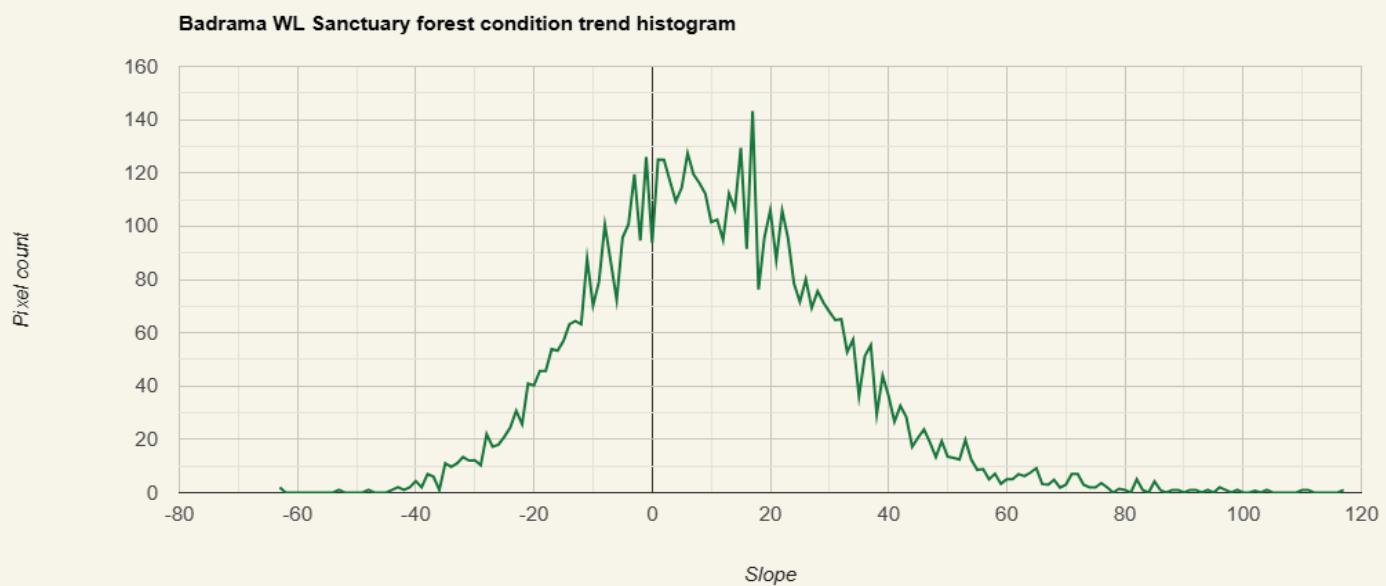
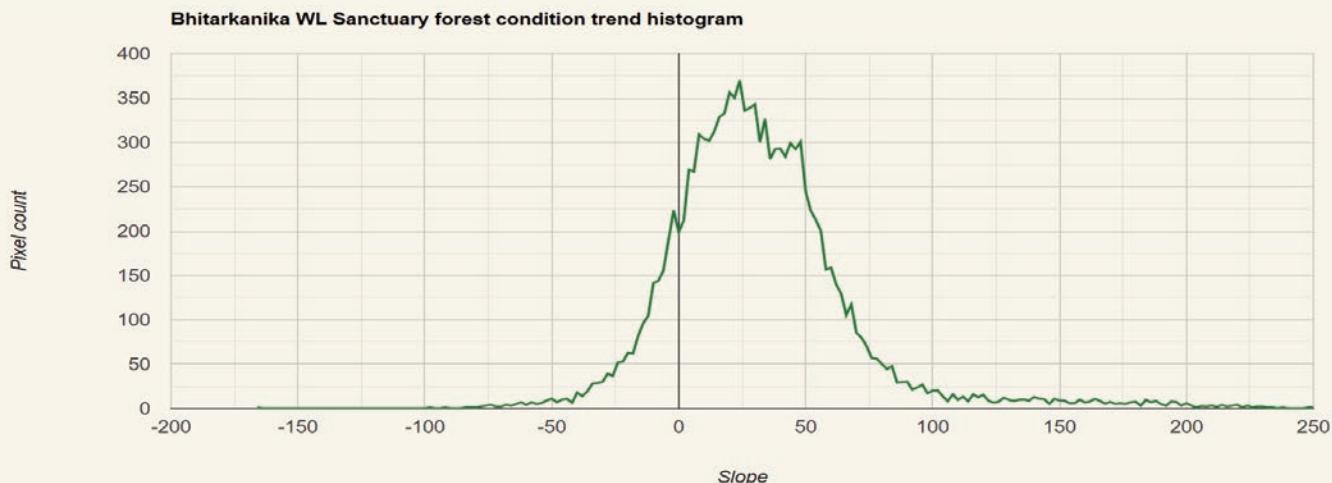

Figure 2: Badrama Wildlife Sanctuary

Figure 3: Bhitarkanika Wildlife Sanctuary

Figure 4: Forest Condition Trend Histogram

The histogram shown in Figure 4 represents the distribution of slopes derived from the vegetation trend analysis (using MODIS EVI data) for Badrama Wildlife Sanctuary. The x-axis represents the slope values (rate of change in vegetation index over time), while the y-axis indicates the pixel count (number of pixels exhibiting a particular slope value).


A key observation is the predominance of positive slope values i.e. the majority of the pixels exhibit positive slopes, indicating an overall increasing trend in vegetation health (greening trend). The highest concentration of pixel counts is observed between slopes of 0 to 20, suggesting that most of the sanctuary is experiencing moderate forest regrowth or stability.

While there are some pixels with negative slopes (browning trend), their frequency is lower. The presence of pixels with slope values below -20 indicates localized areas experiencing

vegetation decline, which could be due to disturbances such as climatic stress, anthropogenic activities or natural degradation. The distribution extends further into higher positive slope values (above 40), though with a lower pixel count. This suggests that certain areas within Badrama are experiencing significant vegetation improvement, possibly due to natural regeneration, afforestation efforts or reduced disturbance.

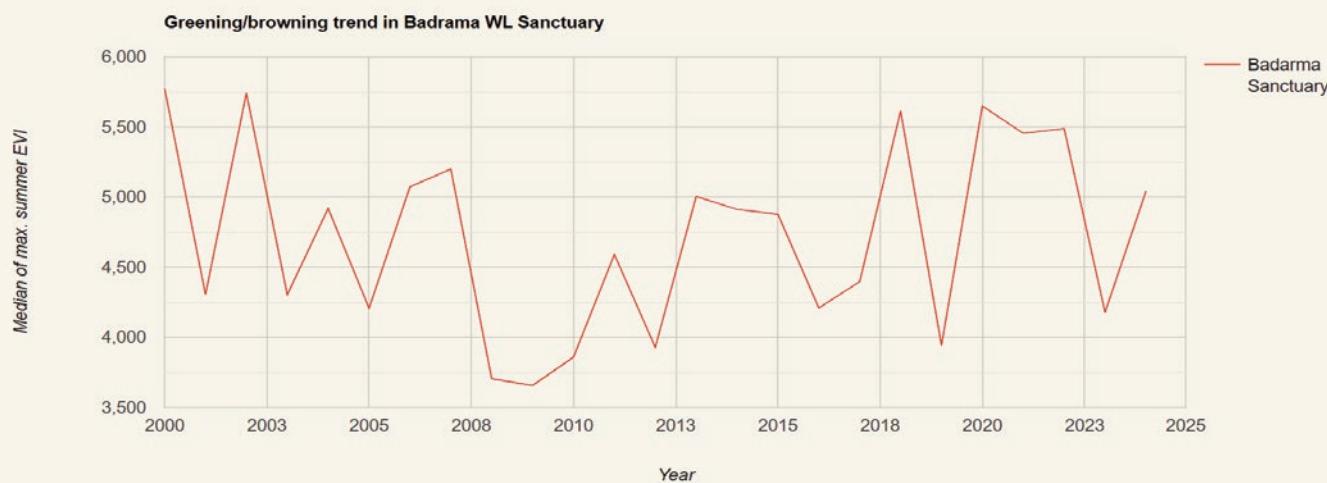
The histogram confirms that Badrama Wildlife Sanctuary exhibits a net greening trend, with most pixels showing an increasing EVI slope. However, a small proportion of the area shows signs of vegetation decline, which may warrant localized conservation interventions. The overall results suggest that conservation and restoration efforts in Badrama have been largely successful, but continued monitoring is needed to address pockets of degradation.

Figure 5: Forest Condition Trend Histogram

The histogram shown in Figure 5 represents the distribution of slopes derived from the vegetation trend analysis (using MODIS EVI data) for Bhitarkanika Wildlife Sanctuary. The x-axis here also have a similar interpretation representing the slope values (rate of change in vegetation index over time), while the y-axis indicates the pixel count (number of pixels exhibiting a particular slope value).

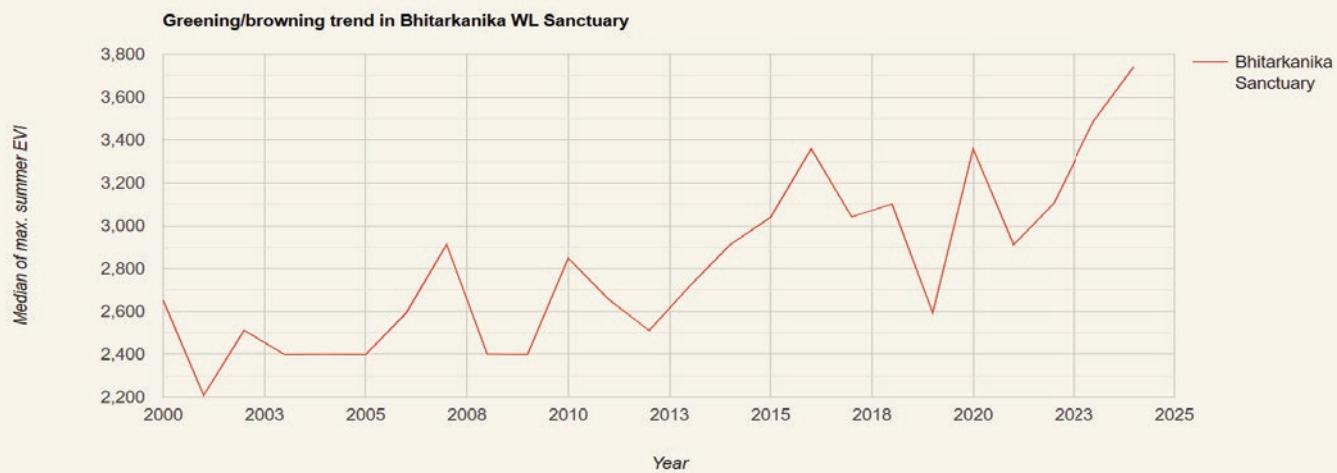
A key observation is the dominance of positive slope values. The highest concentration of pixel counts is centered around positive slope values (0 to 50), indicating that most areas in Bhitarkanika are experiencing a positive trend in vegetation health (greening). This suggests stable or improving forest conditions, likely due to mangrove regeneration and conservation efforts.

There is also a limited presence of negative slopes. Some pixels exhibit negative slopes (declining vegetation), but their frequency is relatively low. The presence of slope values


below -50 suggests localized degradation, possibly due to tidal erosion, cyclonic impact or anthropogenic disturbances. The right-skewed nature of the histogram indicates that while most pixels show moderate greening, a few areas exhibit higher rates of vegetation improvement (slopes above 100). This could be attributed to active restoration, natural regeneration or favorable hydrological conditions for mangrove growth.

The histogram indicates that Bhitarkanika Wildlife Sanctuary is experiencing a net positive vegetation trend, with most areas showing an increase in EVI values over time. However, there are some localized areas of vegetation loss, which may require further investigation and targeted conservation actions. The overall results suggest that Bhitarkanika's mangrove ecosystem is largely stable and improving, likely benefiting from conservation initiatives and natural ecosystem dynamics.

Table 1: Status of greening and browning areas in Badrama Wildlife Sanctuary and Bhitarkanika Wildlife Sanctuary


Wildlife Sanctuary	Browning Fraction	Browning Sq. Km.	Greening Fraction	Greening Sq. Km.	Total Area
Badrama	0.311	105.889	0.686	233.217	339.106
Bhitarkanika	0.136	98.614	0.842	609.206	707.82

The status of greening and browning areas in Badrama Wildlife Sanctuary and Bhitarkanika Wildlife Sanctuary is shown in the Table 1.

Figure 6: Greening/Browning trend in Badrama Wildlife Sanctuary

The line graph as shown above depicts the median of maximum summer EVI (Enhanced Vegetation Index) over time (2000–2024) for Badrama Wildlife Sanctuary. The EVI values exhibit significant interannual variation, suggesting climatic or ecological fluctuations affecting vegetation health. The vegetation index does not show a clear increasing or decreasing long-term trend, indicating that forest conditions are dynamic. Certain years (e.g., around 2010 and 2023) show notable declines, which could be linked to drought, extreme weather events, forest degradation or disturbances. These dips may be indicative of climate variability impacts,

anthropogenic activities, or natural forest succession cycles. Despite fluctuations, the EVI values consistently return to high levels (~5000–6000), suggesting a resilient forest system capable of recovery after temporary declines. This resilience could be attributed to effective conservation efforts, regeneration or the sanctuary's inherent ecosystem stability. The Badrama Wildlife Sanctuary's forest condition appears stable despite periodic declines in EVI, likely due to climatic factors or temporary disturbances. There is no clear long-term greening or browning trend, but fluctuations highlight the need for continuous monitoring to assess climate-related stressors and ecosystem responses.

Figure 7: Greening/Browning trend in Bhitarkanika Wildlife Sanctuary

The line graph as shown in Figure 7 represents the median of maximum summer EVI (Enhanced Vegetation Index) from 2000 to 2024 for Bhitarkanika Wildlife Sanctuary, illustrating vegetation changes over time. Unlike Badrama Wildlife Sanctuary, Bhitarkanika shows a gradual increase in EVI over time, suggesting a positive greening trend. This indicates improved vegetation health and productivity in the region. The EVI values were relatively low and fluctuating, with a dip around 2001 and 2009. This period might reflect mangrove degradation, extreme weather events (cyclones, tidal influences) or human disturbances. Post-2010, there is a steady upward trend, reflecting mangrove regrowth, restoration efforts or climate resilience. Peaks in 2016 and

2020 suggest favourable climatic conditions or conservation impacts. A sharp increase is observed from 2021 onwards, reaching the highest values in 2024. This could be due to mangrove expansion, effective conservation policies or reduced disturbances.

Thus Bhitarkanika Wildlife Sanctuary shows a clear greening trend, indicating mangrove forest recovery and improved ecosystem health over the years. The increasing EVI trend highlights successful conservation efforts, natural regeneration and possibly climate-driven changes. However, periodic dips suggest vulnerability to climatic factors (cyclones, sea-level rise) or anthropogenic influences, necessitating continued monitoring and conservation actions.

CONCLUSIONS

The analysis of the median of maximum summer EVI trends from 2000 to 2024 for Badrama and Bhitarkanika Wildlife Sanctuaries reveals contrasting vegetation dynamics. Badrama Wildlife Sanctuary exhibits a highly fluctuating EVI trend, with no clear long-term increase or decrease. The variability suggests that the forest cover and vegetation health in the region have been influenced by periodic disturbances, climate variability or land-use changes. The absence of a clear greening or browning trend highlights the need for further investigation into forest management practices, fire occurrences and seasonal climate influences.

Bhitarkanika Wildlife Sanctuary, in contrast, demonstrates a clear positive greening trend, with a gradual and consistent increase in EVI over time. The early years (2000–2010) exhibited fluctuations, but from 2010 onwards, a steady rise in vegetation health is evident. This suggests

successful mangrove conservation, restoration initiatives and natural regeneration. However, occasional dips indicate potential vulnerability to cyclones, tidal variations, or other environmental stressors.

The fluctuating trend in Badrama warrants further monitoring, particularly focusing on forest fires, human disturbances and climate-induced stress factors. The positive greening in Bhitarkanika highlights effective conservation efforts, yet continued monitoring is necessary to assess resilience against extreme weather events and rising sea levels. Both sanctuaries require sustained ecological monitoring using remote sensing and adaptive conservation strategies to mitigate risks and ensure long-term ecosystem stability. Overall, the results underscore the importance of targeted conservation interventions tailored to the specific ecological and climatic conditions of each sanctuary.

REFERENCES

MOD13Q1.061 Terra Vegetation Indices 16-Day Global 250m, <https://doi.org/10.5067/MODIS/MOD13Q1.061>

Please send your comments and inputs to: Odisha Forestry Sector Development Society
SFTRI Campus, Bhubaneswar, Odisha, India.
Phone: 0674-2386084, 2386016
email: webmail@ofsdp.org

design and print: info@thirdeyeco.in

EDITORIAL BOARD

EDITOR-IN-CHIEF
Dr. (Mrs) Meeta Biswal, IFS
PCCF (Projects) & Project Director, OFSDS

ASSOCIATE EDITOR
Mr. Krishnakumar K. Navaladi
Team Leader-PMC, OFSDP-II

EDITOR
Mr. Biswajit Sahoo
State Programme Manager (KM, P&P), OFSDP-II